The reactive-templated grain growth (RTGG) method is a powerful fabrication technique for producing textured ceramics having enhanced performance compared to those of conventionally prepared non-textured ceramics, for various functional materials. Its wide applicability is demonstrated by the fact that the RTGG method using β-Co(OH)2 templates gave textured ceramics of p-type thermoelectric layered cobaltites having various compositions. The orientation degree of a prepared ceramic, which influences its performance, depends on the composition of the ceramic. Thus, in order to determine general guidelines for the production of a highly textured ceramic, we analyzed the formation mechanism of the model system [Ca₂CoO₃]₀.₆₂[CoO₂] (CCO: Ca₂CoO₃ layer + CoO₂ layer) ceramic on β-Co(OH)₂ templates by using high-temperature X-ray diffraction (XRD), pole figure, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We demonstrated that a textured CCO ceramic is formed through a series of in-situ topotactic conversions via intermediate phases with a preserved CoO₂ layer of β-Co(OH)₂ templates. In general, we showed, for the first time, that 'a reaction design with partially preserved crystallographic similarities' is essential for the fabrication scheme of a highly textured ceramic with enhanced performance.

Keywords
Formation mechanism of textured ceramics, Reactive-templated grain growth, RTGG, Topotaxy, Reaction design, Layered thermoelectric oxides
1. Introduction

1.1 Fabrication techniques of a textured ceramic

The oriented consolidation of anisotropic particles (OCAP) method, the templated grain growth (TGG) method and the reactive-templated grain growth (RTGG) method have been developed for fabricating textured ceramics. These methods give various functional ceramics with enhanced mechanical (e.g. fracture toughness and bending strength) and physical (e.g. thermoelectric, piezoelectric, ferroelectric and magnetic) properties compared with conventionally prepared non-textured ceramics. To further enhance these properties, the effect of various process parameters of these methods on the orientation degree of prepared ceramics was investigated by experimental and computational approaches.

The OCAP and TGG methods use single crystalline particles with anisotropic shape (plate-like or needle-like) and include a process stage in which the particles are aligned parallel to one another. These methods require, however, single crystalline particles having target compositions, which limits the material systems for which they can be used. The RTGG method overcomes this disadvantage; this method gave textured ceramics for a variety of compositions. We extended the fabrication strategy used in the topotactic synthesis of a textured Mn-Zn ferrite ceramic. In the RTGG method, an anisotropic shaped template particle, which has a different composition but a similar crystal structure to the target ceramic material is used. The template particles are mixed with complementary reactants and aligned parallel to each other. The templates react with the reactants on heat treatment eventually to give textured ceramics.

1.2 Significance of the formation mechanism of a textured ceramic

Table 1 gives typical examples of RTGG-processed ceramics. First, the textured ceramic of Bi0.5(Na,K)0.5TiO3 (simple perovskite structure) formed on Bi3Ti2O12 (layered perovskite) templates was reported. Then, recent reports on the fabrication of textured ceramics of [Ca2CoO3]0.62[CoO2] (abbreviated to CCO: Ca2CoO3 (rock salt-type) layer + CoO2 layer) and [Bi2Sr2-xO4]p[CoO2] on β-Co(OH)2 templates demonstrated the wide applicability of the RTGG method, i.e., even if a reactive template has only a partial similarity with the crystal structure of the target substance (only the CoO2 layer is common), the RTGG method gives a textured ceramic.

However, it was reported that the orientation degree of the prepared ceramics depends on their compositions (see Table 1). CCO and [Bi2Sr2-xO4]p[CoO2] ceramics have Lotgering's orientation degrees (FLG) of 1 and 0.67, respectively, although both ceramics are formed on β-Co(OH)2 templates. In the case of a perovskite-type material, the FLG value of a (Pb1/2Bi1/2)(Ni1/4Ti3/4)O3 ceramic was relatively low, FLG = 0.2. It was considered that the texture development was disturbed by a metastable intermediate phase, which does not share common crystallographic features with the target material. On the other hand, it is known that the orientation degree of prepared ceramics often drastically affects their performance, thus making it important to...
investigate the texture preservation mechanism for each material system.

Recently, we elucidated, for the first time, the general principle for the RTGG procedure that a highly textured ceramic is prepared when the crystallographic similarities from the template material all the way through to the target material are ‘at least partially maintained’ during the formation of the ceramic.30) Here, we report evidence of this principle based on the formation mechanism of a textured CCO ceramic on β-Co(OH)\textsubscript{2} templates: \textit{i.e., in-situ} topotactic conversion of (001) β-Co(OH)\textsubscript{2} \rightarrow \{111\} Co\textsubscript{3}O\textsubscript{4} \rightarrow (001) Ca\textsubscript{x}CoO\textsubscript{2} \rightarrow (001) CCO.

2. Experimental

2.1 Fabrication procedure of a [Ca\textsubscript{2}CoO\textsubscript{3}]\textsubscript{0.62}[CoO\textsubscript{2}] ceramic

Figure 1 shows a schematic representation of the RTGG process for the fabrication of a textured CCO ceramic using β-Co(OH)\textsubscript{2} platelets31) (average diameter ~ 0.5 μm; thickness ~ 0.1 μm; (001) plane developed32)) as reactive templates. The detail of the fabrication procedure and conditions are described elsewhere.23, 30 The templates were mixed with CaCO\textsubscript{3} (complementary reactant), polyvinyl butyral (binder) and di-n-butyl phthalate (plasticizer) in an ethanol-toluene solution. The mixed slurry was tape-cast by a doctor-blade technique, and the obtained sheet was dried in air, cut, and stacked to form a monolithic plate (green compact). The organic compounds in the green compact were burnt out at 673 K in air (dewaxed compact). Finally, the compact was sintered at 1193 K in O\textsubscript{2} with uniaxial pressure.

2.2 Analysis of the formation mechanism of a textured [Ca\textsubscript{2}CoO\textsubscript{3}]\textsubscript{0.62}[CoO\textsubscript{2}] ceramic

We determined the transition of crystalline phases for the compounds in an RTGG-processed specimen during heat treatment by using high-temperature X-ray diffraction (XRD). The XRD measurement was carried out on a surface parallel to the casting plane of the dewaxed compact after heating in air flow at temperatures of 673, 913, 973, 1103 and 1163 K.

We conducted pole figure (PF) measurements for a green compact, a dewaxed compact, a heat-treated specimen (heated at 973 K in O\textsubscript{2} flow for 10 min) and a sintered ceramic specimen (sintered at 1193 K in O\textsubscript{2} flow for 8 h) in order to determine the preferred orientations of the Co-containing substances produced during processing. We also evaluated the preferred orientation function values33) for the normal direction to the focused planes of the substances (\textit{e.g.}, (001) plane of β-Co(OH)\textsubscript{2}).

We observed the microstructure of the heat-treated specimens using a transmission electron microscope (TEM) equipped with EDS in order to confirm that CCO is formed with preserved crystallographic orientations via an intermediate phase formation. In order to observe the microstructural changes that occurred during the formation reaction, the specimens were heat-treated at 1043 K or 1073 K in an O\textsubscript{2} atmosphere with uniaxial pressing at 9.8 MPa for 15 min. For comparison, we acquired TEM and scanning electron microscopy (SEM) images for the sintered ceramic specimen (sintered at 1193 K in an O\textsubscript{2} atmosphere with uniaxial pressing at 19.6 MPa for 20 h), in which the formation of CCO had proceeded to completion.
3. Experimental results and discussion

Figure 2 shows the high-temperature XRD results obtained for the dewaxed specimen, which was found to be a mixture of Co₃O₄ (a decomposed product of β-Co(OH)₂ templates) and CaCO₃ (Fig. 2 (a)). At 913-973 K, some of the CaO (a product of CaCO₃ decomposition) is considered to react with Co₃O₄ to form an intermediate phase (Figs. 2 (b), (c)). The intermediate phase was confirmed to be Ca₀.₅[CoO]₂ (hereafter called CaₓCoO₂) composed of alternating Ca-cation and CoO₂ layers (β-NaₓCoO₂-type CaₓCoO₂). CaₓCoO₂ is expected to react with the residual CaO at 1103 - 1163 K to form CCO (Figs. 2 (d)-(e)). It is noted that the prepared CCO ceramic had a (001) orientation as shown in Fig. 2 (e).

Figure 3 (PF) indicates that the (001), (111), (001) and (002) planes of β-Co(OH)₂ in a green compact, Co₃O₄ in a dewaxed specimen, CaₓCoO₂ in a heat-treated specimen and CCO in a sintered specimen, respectively, were aligned parallel to the casting plane: i.e., these preferred orientations are in the relationship of (001) β-Co(OH)₂ ⟨111⟩ Co₃O₄ ⟨001⟩ CaₓCoO₂ ⟨002⟩ CCO according to the contours concentrated at the pole and the F_{ND} values indicating substantial orientation ($F_{ND} = 0.0$ for completely random and $F_{ND} = 1.0$ for perfectly oriented). It should be noted that the four Co-containing substances have a common (or similar) CoO₂ layer in their crystal structure in the direction parallel to the planes listed above. The conversion of the (001) plane of the β-Co(OH)₂ templates into the {111} plane of the Co₃O₄ particles was also indicated by SEM observation of the dewaxed compact: i.e., it was found to be that the Co₃O₄ particles in the compact maintained the morphology of the templates (hexagonal plate-like shape), and that their developed plane was along the casting plane. The relationship for the crystallographic planes of the other substances was confirmed by the obtained TEM images as described below.

Figure 4 (a) indicates that the developed plane of the CCO grains is along the casting plane for the sintered ceramic specimen in which the formation of (001) CaₓCoO₂ // (001) CCO according to the contours concentrated at the pole and the F_{ND} values indicating substantial orientation ($F_{ND} = 0.0$ for completely random and $F_{ND} = 1.0$ for perfectly oriented).

Fig. 2 Results of high-temperature XRD for a surface parallel to the casting plane of a dewaxed compact during heating in air flow: measured at (a) 673 K, (b) 913 K, (c) 973 K, (d) 1103 K and (e) 1163 K: CCO represents [Ca₃CoO₃]₀.₆₂[CoO₂].

Fig. 3 Results of pole figure measurements for (a) (001) plane of β-Co(OH)₂ templates in a green compact, (b) (111) plane of Co₃O₄ in a dewaxed compact, (c) (001) plane of CaₓCoO₂ in a heat-treated compact (973 K, O₂ flow, 10 min) and (d) (002) plane of CCO ([Ca₃CoO₃]₀.₆₂[CoO₂]) in a sintered ceramic (1193 K, O₂ flow, 8 h). Azimuthal ($0° < β < 360°$) scans were carried out in a reflection geometry around the normal direction of the above plane at various polar angles ($0° < α < 75°$). F_{ND} represents the value of the preferred orientation function evaluated in the normal direction of the measured plane.
CCO had been completed. The selected area electron diffraction (SAED) pattern agrees that for CCO crystal structure (inset of Fig. 4 (b)). In the high-resolution TEM (HRTEM) image (Fig. 4 (b)), the dark linear contrasts are derived from the CoO2 layer of CCO while the three arrays of dark spots are due to the triplicate rock salt-type structure of CCO, according to the simulated HRTEM image of CCO (Fig. 4 (c)).

Figure 5 represents the cross-sectional HRTEM image of the specimen heat-treated at 1043 K (O2, uniaxial pressing of 9.8 MPa, 15 min). SAED patterns and fast Fourier transform (FFT) images suggest structural transition from Co3O4 (region marked 1) to Ca1xCoO2 (region marked 2). The FFT image of region 1 (Ca/Co atomic ratio was less than 0.06 by EDS analysis) exhibits a characteristic hexagonal network of reflection intensities for the {111} plane of Co3O4 while the FFT image of region 2 (Ca/Co atomic ratio was ~0.4) indicates a layer-structured Ca1xCoO2. SAED (designated as 3-2) taken from the middle part of the HRTEM image clearly identifies the crystallographic orientation relationship of {111} Co3O4 // (001) Ca1xCoO2, which agrees with the PF shown in Figs. 3 (b), (c).

Figure 6 shows the cross-sectional HRTEM image of the specimen heat-treated at a higher temperature (1073 K) than that for previous specimen in Fig. 5 (heated at 1043 K). In the magnified figure in Fig. 6 (a), three successive dark lines (corresponding to the CoO2 layer, see Fig. 4 (c)) spaced ~ 0.54 nm apart are gradually transformed into two dark lines aligned at ~ 1.08 nm intervals, with bright and dark contrasts between them. The image on the left hand side is thought to correspond to Ca1xCoO2 due to the intervals of the adjacent dark linear contrasts (the CoO2 layer). On the other hand, the image on the right hand side presumably corresponds to a CCO-like structure on the basis of the following results: the spacing of the linear contrasts (the CoO2 layer) is sufficiently close to those of CCO and the spots due to the rock salt-type layer between the linear contrasts are similar to those of CCO shown in Fig. 4 (b) although they are less evident when compared with those of CCO. The CCO-like structure is considered...
to be a transient and deficient state during the reaction of CaO (the decomposed product of CaCO₃) and CaₓCoO₂. The previous report supports the appearance of such Ca-deficient CCO before the completion of CCO formation. Thus, a possible interpretation (Fig. 6 (b)) of the observed HRTEM image is that CaₓCoO₂ provides a part of CoO₂ layers to form the CoO₂ layer of CCO, while the other CoO₂ layers react with Ca and O to form the rock salt-type layer of CCO.

Figure 7 schematizes the crystal structures of CdI₂-type β-Co(OH)₂, spinel-type Co₃O₄ and β-Na₂CoO₂-type CaₓCoO₂ and misfit-layer-structured CCO. They have common (or similar) CoO₂ layers along the (001) plane in the case of β-Co(OH)₂, CaₓCoO₂ and CCO, and along the {111} plane in the case of Co₃O₄. According to the results described above, it is considered that a series of in-situ topotactic conversions of (001) β-Co(OH)₂ → {111} Co₃O₄ → (001)CaₓCoO₂ → (001) CCO is essential for the formation of a textured CCO ceramic on β-Co(OH)₂ templates with maintained orientations, where the β-Co(OH)₂ template provides the CoO₂ layer.

4. Conclusion

We showed evidence indicating that a textured CCO ceramic is formed in the RTGG process by the in-situ topotactic conversion of (001) β-Co(OH)₂ → {111} Co₃O₄ → (001)CaₓCoO₂ → (001) CCO, where β-Co(OH)₂ templates provide the CoO₂ layer of CCO via Co₃O₄ and CaₓCoO₂. In general, the evidence suggests a guiding principle that crystallographic similarities must be 'at least partially maintained' for all materials produced during the processes for the production of a highly textured ceramic.

The RTGG process also provided a textured ceramic of n-type thermoelectric layered oxide (ZnO)ₙInₓO₃(ZnIO) by using ZnSO₄ • 3Zn(OH)₂ platelets as a reactive template. In addition,
R. Asahi et al. demonstrated that the thermoelectric module using RTGG-prepared textured ceramics of p-type CCO and n-type Zn$_2$O stably generated electric power in a high temperature air atmosphere.\cite{41, 42} We expect that the RTGG process combined with an adequate fabrication scheme of textured ceramics be further applied to the production of not only thermoelectric ceramics but also the other functional ceramics having enhanced performance.

Acknowledgments

We thank Dr. Y. Miyazaki of Tohoku University for giving us structural information on Ca$_{0.5}$[CoO$_2$]. Drs. K. Horibuchi, Y. Seno, J. Sugiyama, R. Asahi and C. Xia of Toyota CRDL contributed to this work through useful discussions.

References

33) Hermans, P. H. and Platzek, P. : Kolloid-Z, 88(1939), 68
34) We determined the crystal structure of Ca$_{x}$CoO$_2$ by conducting Rietveld analysis on the XRD pattern of the heat-treated specimen. For the analysis, we used the crystallographic data of Ca$_{0.5}$CoO$_2$, which Dr. Y. Miyazaki (Tohoku Univ.) et al. have determined by using a single crystal. The detail of the analysis is described in Ref. 30.

(Report received on Mar. 15, 2006)
Hiroshi Itahara
Research fields: Synthesis of thermoelectric materials
Academic degree: Dr. Eng.

Won-Seon Seo*
Research fields: Microstructure analysis by HRTEM, Basic research for ceramic materials, The development of thermoelectric materials
Academic degree: Dr. Eng.

Sujeong Lee*
Research fields: Clay mineralogy, TEM study of the phase transformations of ceramic raw materials
Academic degree: Dr. Sci.

Hiroshi Nozaki
Research fields: Crystal structure analysis using X-ray and neutron
Academic degree: Dr. Eng.

Toshihiko Tani
Research fields: Synthesis and texture engineering of functional ceramics
Academic degree: Ph. D.
Ceram. Soc. of Jpn. Award for Academic Achievements, 2005
Dr. Tani concurrently serves as a professor of Toyota Technological Institute.

Kunihito Koumoto**
Research fields: Oxide thermoelectrics, Nature-guided materials processing
Academic degree: Dr. Eng.
Award: Fellow of the Am. Ceram. Soc., 2005
Chinese Ceram. Soc. Award, 2005
Ceram. Soc. of Jpn. Award, 1993
Richard M. Fulrath Award, 1993
President of the Int. Thermoelec. Soc., 2003-2005
Chairman of the Asian Electroceram. Assoc., 2005-2006

**Nagoya Univ.