1. Introduction

Silicon power devices are semiconductor devices for power electronics appliances. Insulated gate bipolar transistors (IGBTs) are widely used in medium-power applications such as household electric appliances and motor drives for hybrid vehicles because of their attractive features, which include low conduction loss, fast switching speed, and a wide safe operating area. Recently, a practical, theoretically-based approach at reaching the silicon IGBT performance limit has been attempted.\(^{(1-3)}\) IGBTs with a narrow mesa trench have been fabricated based on the theoretical IGBT limit proposed in 2006.\(^{(4)}\) The on-state voltage (\(V_{\text{ON}}\)) becomes lower with a narrower mesa due to internal excess carrier storage. A partially narrow mesa IGBT (PNM-IGBT), which has a narrow trench gate (less than 100 nm wide), was successfully fabricated by additional trench oxidation.\(^{(5)}\) \(V_{\text{ON}}\) almost reached the silicon limit. These approaches attempted to drastically reduce \(V_{\text{ON}}\). However, IGBTs have a trade-off relationship between \(V_{\text{ON}}\) and switching loss. Because of the increase in the internal excess carrier density with a narrower mesa, the storage time during turn-off is extended, resulting in an increased switching loss. Nevertheless, few papers have discussed the silicon IGBT limit from the viewpoint of switching loss.\(^{(6,7)}\) In 2014, a shorted dummy-cell IGBT (SD-IGBT) achieved a 37% reduction in turn-off loss (\(E_{\text{OFF}}\)) to control carrier extraction.\(^{(8)}\)

In order to approach the switching loss reduction limit, the possibility of achieving high-speed operation in silicon IGBTs should be investigated. This is because the switching loss becomes smaller at low gate resistance (\(R_G\)). Note that the turn-off surge voltage (\(V_{\text{SG}}\)) for silicon IGBTs decreases with decreasing \(R_G\). This phenomenon may be peculiar to bipolar devices, as the \(V_{\text{SG}}\) values of MOS devices continually increase as \(R_G\) decreasing. In this \(R_G\) region, the turn-off di/dt cannot be controlled by \(R_G\), and this leads to saturates \(E_{\text{OFF}}\). Therefore, the clarification of these phenomena in this region based on device physics is required to reach the switching loss limit.

This paper reports on the reduction limit of the switching loss in silicon IGBTs without increasing \(V_{\text{ON}}\). In order to clarify the origin of the \(V_{\text{SG}}\) decrease, the \(R_G\) and temperature dependences of \(V_{\text{SG}}\) were investigated. From the measured and simulated results, we found that the \(V_{\text{SG}}\) decrease is derived from a dynamic avalanche adjacent to the trench bottom. This is called...
a micro dynamic avalanche phenomenon. We assumed that this avalanche phenomenon was suppressed by the additional P layer at the bottom of the trench and the insertion of the emitter trench. As a result, the trade-off performance was improved by 20%, and the \(E_{\text{OFF}} \) reduction limit was almost reached.

2. Experimental

To evaluate the \(R_G \) and temperature dependences of \(V_{\text{SG}} \) at a 1.2 kV, 30 A Si power module was prepared. This module contained a field stop (FS) trench IGBT and PI\(N \) diode, serving as the switching device and free-wheeling diode (FWD), respectively. An inhomogeneous turn off due to gate signal delay should be considered in the case of a high internal gate resistance. However, this effect on \(V_{\text{SG}} \) can be ignored because the internal gate resistance (less than 1 \(\Omega \)) was sufficiently lower than the external gate resistances. Switching waveforms with different values of \(R_G \) and temperature were measured with an inductive load in the double-pulse mode. The gate drive voltage, bus voltage, load inductance, and capacitance were 1/5–7 V, 100 V, 100 \(\mu \)H, and 200 \(\mu \)F, respectively. The \(R_G \) dependence of \(V_{\text{SG}} \) was measured by adjusting the external resistance connected to the gate driver. The \(V_{\text{SG}} \) dependence on temperature was obtained by adjusting the hot plate temperature and measuring the surface temperature of the devices with a thermocouple.

3. Analysis of Surge Voltage Decrease

Figure 1 shows the measured \(R_G \) dependence of \(V_{\text{SG}} \) at various temperatures. The measured switching waveforms of the collector current (\(I_C \)) and collector to emitter voltage (\(V_{\text{CE}} \)) are shown in the inset of Fig. 1. \(V_{\text{SG}} \) is defined as the difference between the maximum voltage and the bus voltage.\(V_{\text{SG}} \) increased as \(R_G \) decreased from 150 to 60 \(\Omega \). However, \(V_{\text{SG}} \) had a maximum value at approximately 60 \(\Omega \), and decreased at low \(R_G \) as described in the previous section. In this study, we defined the regions of \(V_{\text{SG}} \) decrease and increase with decreasing \(R_G \) as Regions I and II, respectively, as depicted in Fig. 1. Note that \(V_{\text{SG}} \) increased with increasing temperature in Region I, whereas \(V_{\text{SG}} \) was almost independent of temperature in Region II. The turn-off \(di/dt \) in Region I has already investigated, with a focus on the current components during the Miller plateau period.\(^{(9)} \) It was concluded that the excess carrier sweep-out current, i.e., the “carrier streaming effect”, plays an important role in Region I. However, the temperature dependence in Region I obtained in our study cannot be explained by the carrier streaming effect. This is because the amount of sweep-out current caused by the charging or discharging the depletion layer was almost independent of temperature.

The measured temperature and \(R_G \) dependences of \(V_{\text{SG}} \) were reproduced by device simulations. All simulations were carried out using the Sentaurus Device Simulator (Synopsys). The inset of Fig. 2 shows the simulated \(R_G \) dependence of \(V_{\text{SG}} \) under the measurement conditions. \(V_{\text{SG}} \) decreased at low \(R_G \) values. To make the \(V_{\text{SG}} \) decrease in Region I more pronounced, the bus voltage and collector current parameters were assigned different values from those in the measurement. Figure 2 shows a simulated \(R_G \) dependence of \(V_{\text{SG}} \) with changing temperature. In Region II, \(V_{\text{SG}} \) was almost independent of temperature. On the other hand, in Region I, the surge voltage decreased with decreasing \(R_G \) and increased with elevated temperature. The simulated results were in good agreement with the measurements.

To clarify the origin of the \(V_{\text{SG}} \) decrease in Region I, the internal dynamics of the IGBT during turn off were investigated. Figure 3 shows time evolutions of the carrier concentration, space charge, and avalanche
generation rate \((G_A)\) at a location adjacent to the bottom of the trench when the maximum electric field in the device during turn off was observed. \(G_A\) is given by the following equation:
\[
G_A = \frac{\alpha_e}{q} |J_n| + \frac{\alpha_p}{q} |J_p|,
\]
where \(\alpha_e\) and \(\alpha_p\) are the ionization rates for electrons and holes, respectively, and \(J_n\) and \(J_p\) are the electron and hole current densities, respectively. In Region I, rapid increases in the positive space charge, carrier concentration, and \(G_A\) occurred at the collector current turn-off \((t_{OFF})\).

These results indicate that a dynamic avalanche is generated near the trench bottom at time \(t_{OFF}\). The origin of the \(V_{SG}\) decrease is considered using a model we propose based on the dynamic avalanche phenomenon. Figure 4 shows a schematic diagram of the internal space charges with different \(R_G\) values at time \(t_{OFF}\). The maximum electric field \((E_{max})\) near the bottom of the trench is mainly determined by the net space charge \(Q = N_{th} + p - n\), where \(N_{th}\), \(p\), and \(n\) are the donor, hole, and electron concentrations, respectively. In Region I, the electrons injected via the MOS channel into the depletion layer are negligible \((n \approx 0)\) because the gate-to-emitter voltage is lower than \(V_{th}\) after \(t_{OFF}\) (see Fig. 3). In Region II, on the other hand, the MOS channel remains open and thus supplies electrons to the depletion layer \((n > 0)\). Then, the net space charge in Region I becomes larger than in Region II \((Q > Q_{th})\), resulting in \(E_{maxI} > E_{maxII}\). Because the ionization rate depends strongly on the electric field, \(G_A\) in Region I becomes inherently higher than in Region II. This leads to a small turn off \(di/dt\) due to enhanced carrier generation. Thus, \(V_{SG}\) decreases in Region I.

Figure 5 shows the dependences of \(V_{SG}\) and \(G_A\) on \(R_G\) and temperature at \(t_{OFF}\). \(G_A\) is very low in Region II, but increases with decreasing \(R_G\) and temperature in Region I. This temperature dependence may be caused

Fig. 2 Simulated dependence of turn-off surge on gate resistance and temperature. Inset: simulated dependence of avalanche generation rate and turn-off surge on gate resistance under the same circuit parameters in the measurements.

Fig. 3 Simulated switching waveforms and internal dynamics adjacent to bottom of trench for Region I.

Fig. 4 Schematic diagram of internal space charges at each region just before collector current turn-off.
by lattice vibrations. As expected, the decrease in G_A with increasing temperature corresponds well with the temperature dependence of V_{SG}. Therefore, the V_{SG} decrease is derived from the dynamic avalanche phenomenon and leads to E_{OFF} saturation. This dynamic avalanche phenomenon occurs in a limited spatial region near the bottom of the trench. Moreover, the V_{SG} decrease occurs even with an extremely small G_A compared with that of the critical level, $G_{A,crit} = 0.6 \times 10^{25} \text{cm}^{-3}\text{s}^{-1}$, which was estimated by the collector current dependence of E_{OFF}\(^{(6)}\). Therefore, this phenomenon is called a “micro” dynamic avalanche.

4. Turn-off Loss Reduction Limit

From the above analysis, it was found that E_{OFF} saturation is caused by a dynamic avalanche adjacent to the trench bottom. In this section, the limit to which E_{OFF} can be reduced by the suppression of the dynamic avalanche will be considered. In order to estimate the E_{OFF} reduction limit, a simple examination of the impact of avalanche generation on V_{SG} decrease and E_{OFF} saturation was performed by device simulation. Figures 6 and 7 show the simulated R_G dependence of V_{SG} and E_{OFF} with and without an avalanche generation model (default model: van Overstraeten), respectively\(^{(11)}\). Clearly, the V_{SG} decrease disappears without the avalanche model. V_{SG} continues to increase with decreasing R_G, similar to the behavior of MOS devices. Furthermore, the E_{OFF} saturation at low R_G also disappears without the avalanche model. Here, we take E_{OFF} at $R_G = 0 \text{ ohm}$ without the avalanche model to be the E_{OFF} reduction limit. Since the variations in the collector current (di/dt) and voltage (dV/dt) with time are extremely high, E_{OFF} at its reduction limit mainly consists of power dissipation due to a current tail.

In order to approach the E_{OFF} reduction limit, we attempted to enhance V_{SG} intentionally by suppressing the dynamic avalanche. A reduction of the electric field and positive space charge near the trench bottom...
should suppress the dynamic avalanche, as shown in Fig. 4. These physical quantities are strongly influenced by the device structure adjacent to the trench bottom. In order to confirm our proposed model and approach the E_{off} reduction limit, the three device structures depicted in Fig. 8 were simulated. The conventional FS-IGBT with a trench gate was used for reference (Device A). Device B has an additional P layer at the bottom of the trench gate. This P layer shields the electric field at the bottom of the trench during turn off. The electric field, which is reduced by the P layer, is partly applied to the pn junction between the p-body and n-base layer. Device C not only has a P layer at the bottom of the trench gate, but also has an additional trench connected to the emitter electrode (emitter trench). The insertion of an emitter trench has the following advantages over the other devices.

1) The emitter trench has little influence on V_{ON}.
2) The electric field near the bottom of the trench gate is reduced by the emitter trench.
3) Because the emitter trench is connected to ground, the electrostatic potential around the emitter trench becomes lower than in a device without an emitter trench. Therefore, a partial dispersion of the hole current toward the emitter trench can also be expected. These effects in Device C lead to the reduction of the electric field and positive space charge near the bottom of the trench gate. We predicted that the order of effectiveness at suppressing the dynamic avalanche would be Device C > Device B > Device A.

Figure 9 shows the R_g dependence of V_{SG} for each device. Figure 9 also shows the R_g dependence of V_{SG} in Device A without the avalanche generation model. As expected, V_{SG} decrease in Device B shrinks at low R_g. The improvement achieved for Device C is superior to that for Device B. Figure 10 shows the R_g dependence of E_{off} for each device. E_{off} reduction corresponds to a shrinkage of the V_{SG} decrease at low R_g. Figure 11 shows the trade-off curve with $R_g = 1 \, \Omega$ for each device. The trade-off performance in Devices B and C is improved by 9% and 20%, respectively, without increasing V_{ON}. As a result, E_{off} in Device C is close to the reduction limit (30%). In this study, it became clear that suppression of the dynamic avalanche near the trench bottom significantly contributes to E_{off} reduction. However, E_{off} still does not reach its lower limit, as shown in Fig. 11. This indicates that further suppression of the dynamic avalanche is required. Moreover, an extremely high V_{SG} at low R_g, as shown in Fig. 9, may cause a narrowing of the safe operating area even with a low stray inductance. As future work, we will investigate improved device robustness and additional E_{off} reduction.

5. Conclusion

In summary, the switching loss limit in silicon IGBTs was investigated. From the measured R_g dependence...
of V_{SG} and E_{OFF}, V_{SG} decrease and E_{OFF} saturation at low R_G was observed. Moreover, the V_{SG} decrease depends on the temperature. To clarify the origin of the V_{SG} decrease, the internal dynamics during turn off were analyzed by device simulation. The simulations indicated that a dynamic avalanche occurs at the trench bottom during turn-off at low R_G. This model based on the avalanche phenomenon can account for the measured dependences of V_{SG} on R_G and temperature. This avalanche phenomenon is suppressed by the

reduction of the electric field and positive space charge near the trench bottom. A 20% improvement in the trade-off relationship between E_{OFF} and V_{ON} at low R_G was realized and the E_{OFF} limit was almost reached by a structure with an additional P layer and an emitter trench. We conclude that suppression of the dynamic avalanche adjacent to the trench bottom plays a key role in E_{OFF} reduction, especially at low R_G.

References

Figs.1, 2 and 5

Figs. 3, 4, 6-8 and 9-11

Satoru Machida
Research Field:
- Power Semiconductor Devices
Academic Degree: Dr.Eng.
Academic Society:
- The Institute of Electrical Engineers of Japan

Kenichi Ito
Research Fields:
- Power Electronics Circuits
- Power Semiconductor Devices
Academic Societies:
- The Japan Society of Applied Physics
- The Institute of Electrical Engineers of Japan

Yusuke Yamashita
Research Field:
- Power Semiconductor Devices
Academic Society:
- The Japan Society of Applied Physics
Award:
- Technical Committee Encouragement Award on IEEJ Transactions on Electronics Information and Systems, The Institute of Electrical Engineers of Japan, 2015